organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(Biphenyl-4-yl)-1-(4-fluorophenyl)prop-2-en-1-one

B. K. Sarojini,^a H. S. Yathirajan,^b T. V. Sreevidya,^c B. Narayana^c and Michael Bolte^d*

^aDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 4 May 2007; accepted 12 May 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.053; wR factor = 0.150; data-to-parameter ratio = 6.6.

The title compound, $C_{21}H_{15}FO$, crystallizes with two molecules in the asymmetric unit, which differ only in the signs of their torsion angles. Nevertheless, the two molecules are not related by any crystallographic symmetry element. The dihedral angles between the two phenyl rings of the biphenyl unit are 3.0 (2) and 2.1 (2)°.

Related literature

For related structures, see: Fischer *et al.* (2007a,b,c,d,e); Yathirajan *et al.* (2007). For related literature, see: Carlo *et al.* (1999); Fichou *et al.*, (1988); Goto *et al.*, (1991); Uchida *et al.* (1998); Zhao *et al.* (2000); Sarojini *et al.* (2006).

Experimental

a = 6.0095 (5) Å
b = 35.278 (3) Å
c = 7.2352 (6) Å

 $\beta = 90.018 (7)^{\circ}$ $V = 1533.9 (2) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Stoe IPDS II two-circle diffractometer Absorption correction: none 11797 measured reflections

Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.150$ S = 1.082748 reflections 416 parameters $\mu = 0.09 \text{ mm}^{-1}$ T = 173 (2) K $0.24 \times 0.23 \times 0.07 \text{ mm}$

2748 independent reflections 2247 reflections with $I > 2\sigma(I)$ $R_{int} = 0.078$

 $\begin{array}{l} 1 \mbox{ restraint} \\ H\mbox{-atom parameters constrained} \\ \Delta \rho_{max} = 0.24 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.21 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

HSY thanks the University of Mysore for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2013).

References

- Carlo, G. D., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.
- Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn. J. Appl. Phys. 27, 429–430.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1349-o1350.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1351–o1352.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1353–01354.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007d). Acta Cryst. E63, o1355–o1356.
- Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007e). Acta Cryst. E63, o1357-o1358.
- Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
- Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, **295**, 54–59.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). *Mol. Cryst. Liq. Cryst.* **315**, 135–140.
- Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 0827–0828.
- Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513– 1517.

Acta Cryst. (2007). E63, o2945 [doi:10.1107/S1600536807023434]

3-(Biphenyl-4-yl)-1-(4-fluorophenyl)prop-2-en-1-one

B. K. Sarojini, H. S. Yathirajan, T. V. Sreevidya, B. Narayana and M. Bolte

Comment

Chalcones (1,3-diaryl-2-propen-1-ones), belonging to the flavonoid family is one of the major class of natural products which have been recently subjects of great interest for their interesting pharmacological activities. Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities. Among several organic compounds reported for NLO property, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. We have synthesized a new chalcone.

The title compound, $C_{21}H_{15}FO$, crystallized with two molecules in the asymmetric unit, which differ only in the sign of their torsion angles. A least-squares fit of all non H atoms of molecule one with the inverted molecule two gives an r.m.s. deviation of 0.022 Å. Nevertheless, the two molecules are not related by any crystallographic symmetry element (Fig. 2). The dihedral angle between the two phenyl rings of the biphenyl unit is 3.0 (2)% and 2.1 (2)°, respectively.

Experimental

A solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of biphenyl aldehyde (1.8 g, 0.01 mol) and 4-fluoroacetophenone (1.38 g, 0.01 mol) in ethanol (15 ml). The mixture was stirred at room temperature for 6 h. The precipitated solid was filtered, washed with cold ethanol, dried and recrystallized from ethanol (yield: 83%; m.p.:405–407 K). Analysis for $C_{21}H_{15}FO$: Found (Calculated): C: 83.30 (83.42); H: 4.91% (5.00%).

Refinement

In the absence of any anomalous scatterer, the Flack (1983) parameter is meaningless and therefore, Friedel pairs had been merged prior to refinement. H atoms were found in a difference map, but they were refined using a riding model with C—H = 0.95Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

Fig. 2. Packing diagram of the title compound.

3-(biphenyl)-1-(4-fluorophenyl)prop-2-en-1-one

Crystal data	
C ₂₁ H ₁₅ FO	$F_{000} = 632$
$M_r = 302.33$	$D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 11222 reflections
a = 6.0095 (5) Å	$\theta = 2.4 - 25.4^{\circ}$
<i>b</i> = 35.278 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 7.2352 (6) Å	T = 173 (2) K
$\beta = 90.018 \ (7)^{\circ}$	Plate, colourless
$V = 1533.9 (2) \text{ Å}^3$	$0.24\times0.23\times0.07~mm$
Z = 4	

Data collection

STOE IPDS II two-circle- diffractometer	2247 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.078$
Monochromator: graphite	$\theta_{\text{max}} = 25.1^{\circ}$
T = 173(2) K	$\theta_{\min} = 2.3^{\circ}$
ω scans	$h = -6 \rightarrow 7$
Absorption correction: none	$k = -41 \rightarrow 41$
11797 measured reflections	$l = -8 \rightarrow 7$
2748 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0971P)^2 + 0.1253P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.053$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.150$	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.08	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
2748 reflections	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
416 parameters	Extinction coefficient: 0.029 (5)
1 restraint	
Primary atom site location: structure-invariant direct methods	
Secondary store site location, difference Fourier man	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Experimental.;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
F1	0.9293 (5)	0.05442 (9)	0.7455 (5)	0.0675 (9)
01	0.3329 (5)	0.19910 (10)	0.6711 (5)	0.0543 (9)
C1	0.5359 (7)	0.19750 (14)	0.6794 (6)	0.0390 (10)
C2	0.6741 (8)	0.23236 (12)	0.6773 (6)	0.0400 (10)
H2	0.8271	0.2309	0.6453	0.048*
C3	0.5832 (7)	0.26574 (14)	0.7206 (6)	0.0391 (10)
H3	0.4313	0.2653	0.7570	0.047*
C11	0.6470 (7)	0.16017 (13)	0.6914 (6)	0.0356 (9)
C12	0.8594 (7)	0.15582 (14)	0.7682 (6)	0.0418 (11)
H12	0.9401	0.1775	0.8078	0.050*
C13	0.9530 (7)	0.12006 (15)	0.7871 (7)	0.0455 (11)
H13	1.0967	0.1171	0.8399	0.055*
C14	0.8367 (8)	0.08951 (14)	0.7293 (7)	0.0443 (11)
C15	0.6264 (7)	0.09220 (13)	0.6512 (7)	0.0437 (11)
H15	0.5489	0.0702	0.6110	0.052*
C16	0.5339 (7)	0.12755 (13)	0.6339 (6)	0.0398 (10)
H16	0.3895	0.1300	0.5817	0.048*
C21	0.6921 (7)	0.30301 (12)	0.7181 (6)	0.0333 (9)
C22	0.5779 (7)	0.33406 (12)	0.7906 (6)	0.0357 (10)
H22	0.4349	0.3304	0.8437	0.043*
C23	0.6694 (7)	0.37021 (12)	0.7867 (6)	0.0332 (9)
H23	0.5869	0.3908	0.8362	0.040*
C24	0.8798 (7)	0.37701 (12)	0.7115 (6)	0.0321 (9)
C25	0.9948 (7)	0.34561 (12)	0.6367 (6)	0.0360 (9)
H25	1.1370	0.3492	0.5821	0.043*
C26	0.9029 (7)	0.30978 (12)	0.6419 (6)	0.0356 (10)
H26	0.9848	0.2891	0.5924	0.043*
C31	0.9783 (7)	0.41586 (11)	0.7093 (5)	0.0313 (9)
C32	0.8697 (7)	0.44664 (13)	0.7904 (6)	0.0364 (10)
H32	0.7318	0.4425	0.8514	0.044*
C33	0.9562 (8)	0.48266 (13)	0.7848 (7)	0.0413 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H33	0.8753	0.5031	0.8381	0.050*
C34	1.1616 (8)	0.48961 (13)	0.7018 (6)	0.0412 (10)
H34	1.2225	0.5145	0.6994	0.049*
C35	1.2753 (7)	0.45932 (12)	0.6224 (6)	0.0384 (10)
H35	1.4162	0.4634	0.5665	0.046*
C36	1.1845 (7)	0.42326 (12)	0.6245 (6)	0.0361 (9)
H36	1.2632	0.4031	0.5674	0.043*
F1A	0.5605 (5)	0.55587 (8)	0.8197 (5)	0.0630 (9)
O1A	1.1685 (5)	0.69972 (10)	0.7490 (5)	0.0533 (9)
C1A	0.9635 (7)	0.69835 (14)	0.7567 (6)	0.0386 (10)
C2A	0.8260 (8)	0.73304 (12)	0.7556 (6)	0.0396 (10)
H2A	0.6734	0.7317	0.7222	0.047*
C3A	0.9166 (7)	0.76640 (13)	0.8017 (6)	0.0378 (10)
НЗА	1.0678	0.7659	0.8398	0.045*
C11A	0.8495 (7)	0.66086 (13)	0.7687 (6)	0.0371 (10)
C12A	0.6396 (7)	0.65722 (13)	0.8457 (6)	0.0378 (10)
H12A	0.5615	0.6792	0.8856	0.045*
C13A	0.5420 (7)	0.62161 (14)	0.8650 (7)	0.0426 (10)
H13A	0.3991	0.6190	0.9197	0.051*
C14A	0.6560 (8)	0.59074 (13)	0.8039 (7)	0.0428 (11)
C15A	0.8655 (8)	0.59300 (14)	0.7244 (7)	0.0440 (11)
H15A	0.9404	0.5709	0.6822	0.053*
C16A	0.9612 (7)	0.62829 (13)	0.7086 (6)	0.0390 (10)
H16A	1.1054	0.6306	0.6561	0.047*
C21A	0.8078 (7)	0.80367 (12)	0.7998 (6)	0.0327 (9)
C22A	0.9213 (7)	0.83501 (11)	0.8713 (6)	0.0344 (9)
H22A	1.0656	0.8315	0.9223	0.041*
C23A	0.8293 (7)	0.87083 (12)	0.8697 (6)	0.0342 (9)
H23A	0.9108	0.8913	0.9216	0.041*
C24A	0.6190 (7)	0.87784 (11)	0.7938 (6)	0.0306 (9)
C25A	0.5064 (7)	0.84613 (12)	0.7194 (6)	0.0319 (9)
H25A	0.3640	0.8497	0.6651	0.038*
C26A	0.5966 (8)	0.81006 (13)	0.7231 (6)	0.0369 (10)
H26A	0.5147	0.7894	0.6733	0.044*
C31A	0.5228 (7)	0.91661 (12)	0.7907 (6)	0.0319 (9)
C32A	0.6346 (7)	0.94764 (12)	0.8707 (6)	0.0370 (9)
H32A	0.7740	0.9435	0.9293	0.044*
C33A	0.5476 (7)	0.98384 (13)	0.8663 (7)	0.0412 (10)
H33A	0.6282	1.0042	0.9206	0.049*
C34A	0.3416 (7)	0.99082 (13)	0.7827 (6)	0.0379 (10)
H34A	0.2821	1.0158	0.7787	0.045*
C35A	0.2254 (7)	0.96054 (13)	0.7054 (6)	0.0387 (10)
H35A	0.0855	0.9648	0.6478	0.046*
C36A	0.3132 (7)	0.92418 (12)	0.7122 (6)	0.0337 (9)
H36A	0.2293	0.9038	0.6624	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0575 (19)	0.0508 (18)	0.094 (3)	0.0133 (15)	0.0044 (16)	0.0068 (16)
01	0.0339 (18)	0.0486 (19)	0.081 (2)	-0.0034 (15)	-0.0018 (15)	0.0000 (18)
C1	0.032 (2)	0.046 (2)	0.040 (2)	-0.005 (2)	0.0027 (17)	-0.002 (2)
C2	0.039 (2)	0.040 (3)	0.041 (2)	-0.0042 (19)	0.0020 (18)	-0.0048 (19)
C3	0.036 (2)	0.046 (3)	0.035 (2)	-0.009 (2)	0.0007 (17)	-0.0007 (19)
C11	0.036 (2)	0.040 (2)	0.031 (2)	-0.0038 (19)	0.0032 (16)	0.0010 (18)
C12	0.033 (2)	0.053 (3)	0.039 (3)	-0.008 (2)	0.0027 (18)	-0.001 (2)
C13	0.031 (2)	0.061 (3)	0.044 (3)	0.003 (2)	0.0008 (19)	0.007 (2)
C14	0.041 (3)	0.039 (3)	0.052 (3)	0.004 (2)	0.013 (2)	0.006 (2)
C15	0.038 (2)	0.043 (3)	0.050 (3)	-0.005 (2)	0.0015 (19)	-0.001 (2)
C16	0.034 (2)	0.049 (3)	0.037 (2)	-0.007 (2)	0.0054 (18)	-0.002 (2)
C21	0.032 (2)	0.040 (2)	0.028 (2)	-0.0006 (18)	0.0016 (16)	-0.0004 (17)
C22	0.029 (2)	0.042 (2)	0.036 (3)	0.0038 (18)	-0.0011 (17)	-0.0003 (18)
C23	0.027 (2)	0.040 (2)	0.032 (2)	0.0038 (18)	-0.0002 (16)	-0.0028 (17)
C24	0.028 (2)	0.043 (2)	0.025 (2)	0.0016 (17)	-0.0009 (15)	0.0015 (16)
C25	0.031 (2)	0.042 (2)	0.035 (2)	0.0033 (18)	0.0082 (17)	0.0022 (18)
C26	0.034 (2)	0.033 (2)	0.040 (3)	0.0007 (17)	0.0046 (17)	-0.0046 (17)
C31	0.034 (2)	0.038 (2)	0.023 (2)	0.0014 (17)	-0.0002 (16)	0.0010 (15)
C32	0.030 (2)	0.042 (2)	0.037 (2)	0.0003 (18)	0.0030 (17)	0.0005 (19)
C33	0.046 (3)	0.033 (2)	0.044 (3)	0.0047 (19)	0.0063 (19)	-0.0032 (18)
C34	0.041 (2)	0.041 (2)	0.042 (3)	-0.003 (2)	-0.0002 (19)	0.0019 (19)
C35	0.034 (2)	0.044 (2)	0.036 (2)	-0.0019 (19)	0.0057 (17)	0.0011 (18)
C36	0.032 (2)	0.042 (2)	0.034 (2)	0.0036 (18)	0.0029 (17)	-0.0014 (18)
F1A	0.0545 (18)	0.0416 (16)	0.093 (2)	-0.0106 (13)	0.0007 (16)	0.0079 (15)
O1A	0.0342 (18)	0.0443 (19)	0.081 (3)	0.0014 (15)	0.0039 (15)	0.0009 (17)
C1A	0.034 (2)	0.044 (2)	0.037 (2)	0.008 (2)	0.0025 (16)	0.002 (2)
C2A	0.037 (2)	0.038 (2)	0.044 (3)	0.0031 (19)	-0.0032 (18)	0.0017 (19)
C3A	0.037 (2)	0.045 (2)	0.032 (2)	0.004 (2)	0.0060 (16)	0.0011 (19)
C11A	0.033 (2)	0.039 (2)	0.039 (3)	0.0030 (18)	-0.0036 (18)	0.0025 (19)
C12A	0.034 (2)	0.042 (2)	0.038 (2)	0.0061 (19)	0.0063 (17)	0.0002 (18)
C13A	0.034 (2)	0.050 (3)	0.044 (3)	-0.002 (2)	-0.0022 (18)	0.004 (2)
C14A	0.039 (2)	0.041 (3)	0.048 (3)	-0.004 (2)	0.000 (2)	0.005 (2)
C15A	0.043 (2)	0.043 (3)	0.046 (3)	0.007 (2)	-0.003 (2)	0.001 (2)
C16A	0.034 (2)	0.043 (2)	0.040 (2)	0.0044 (19)	0.0020 (17)	-0.0002 (19)
C21A	0.031 (2)	0.038 (2)	0.029 (2)	0.0011 (18)	0.0061 (16)	0.0029 (17)
C22A	0.026 (2)	0.042 (2)	0.035 (2)	0.0005 (18)	-0.0014 (16)	0.0031 (18)
C23A	0.035 (2)	0.039 (2)	0.029 (2)	-0.0048 (18)	0.0014 (16)	0.0000 (17)
C24A	0.029 (2)	0.037 (2)	0.026 (2)	-0.0008 (16)	0.0048 (16)	0.0012 (16)
C25A	0.026 (2)	0.038 (2)	0.031 (2)	-0.0011 (17)	-0.0020 (16)	-0.0018 (17)
C26A	0.039 (2)	0.038 (2)	0.034 (2)	-0.0029 (19)	-0.0025 (17)	-0.0026 (17)
C31A	0.032 (2)	0.037 (2)	0.027 (2)	-0.0029 (17)	0.0053 (16)	0.0024 (16)
C32A	0.034 (2)	0.042 (2)	0.035 (2)	0.0000 (19)	-0.0040 (17)	0.0011 (18)
C33A	0.043 (3)	0.039 (2)	0.042 (3)	-0.005 (2)	0.0036 (19)	-0.0006 (19)
C34A	0.040 (2)	0.036 (2)	0.037 (2)	0.0058 (19)	0.0068 (18)	0.0000 (18)

C35A	0.031 (2)	0.047 (3)	0.038 (2)	0.0063 (19)	0.0021 (18)	0.0028 (19)
C36A	0.027 (2)	0.040 (2)	0.034 (2)	-0.0006 (18)	0.0043 (16)	-0.0008 (17)
Geometric parar	neters (Å, °)					
F1—C14		1.362 (5)	F1A—	-C14A	1.3	62 (5)
01—C1		1.223 (5)	O1A-	-C1A	1.2	34 (5)
C1-C11		1.479 (7)	C1A—	-C2A	1.4	77 (6)
C1—C2		1.484 (6)	C1A—	-C11A	1.4	92 (6)
C2—C3		1.336 (6)	C2A—	-C3A	1.3	39 (6)
C2—H2		0.9500	C2A—	-H2A	0.9	500
C3—C21		1.469 (6)	C3A—	-C21A	1.4	68 (6)
С3—Н3		0.9500	C3A—	-H3A	0.9	500
C11—C16		1.400 (6)	C11A-	C12A	1.3	85 (6)
C11—C12		1.401 (6)	C11A-	C16A	1.4	00 (6)
C12—C13		1.388 (7)	C12A-	C13A	1.3	93 (7)
С12—Н12		0.9500	C12A-	—H12A	0.9	500
C13—C14		1.351 (7)	C13A-	C14A	1.3	61 (7)
С13—Н13		0.9500	C13A-	—H13A	0.9	500
C14—C15		1.387 (7)	C14A-	C15A	1.3	87 (7)
C15—C16		1.371 (7)	C15A-	C16A	1.3	76 (7)
C15—H15		0.9500	C15A-	—H15A	0.9	500
C16—H16		0.9500	C16A-	—H16A	0.9	500
C21—C22		1.395 (6)	C21A-	—C22A	1.3	98 (6)
C21—C26		1.402 (6)	C21A-	C26A	1.4	04 (6)
C22—C23		1.389 (6)	C22A-	C23A	1.3	79 (6)
С22—Н22		0.9500	C22A-	—H22A	0.9	500
C23—C24		1.397 (6)	C23A-	C24A	1.4	00 (6)
С23—Н23		0.9500	C23A-	—Н23А	0.9	500
C24—C25		1.413 (6)	C24A-	C25A	1.4	14 (6)
C24—C31		1.493 (6)	C24A-	C31A	1.4	85 (5)
C25—C26		1.380 (6)	C25A-	C26A	1.3	83 (6)
С25—Н25		0.9500	C25A-	—Н25А	0.9	500
C26—H26		0.9500	C26A-	—H26A	0.9	500
C31—C32		1.396 (6)	C31A-	—C36A	1.4	07 (6)
C31—C36		1.408 (6)	C31A-	C32A	1.4	09 (6)
C32—C33		1.374 (6)	C32A-	C33A	1.3	80 (6)
С32—Н32		0.9500	C32A-	—H32A	0.9	500
C33—C34		1.394 (7)	C33A-	C34A	1.4	00 (7)
С33—Н33		0.9500	C33A-	—Н33А	0.9	500
C34—C35		1.393 (6)	C34A-	C35A	1.3	93 (6)
C34—H34		0.9500	C34A-	—H34A	0.9	500
C35—C36		1.384 (6)	C35A-	C36A	1.3	88 (6)
С35—Н35		0.9500	C35A-	—Н35А	0.9	500
С36—Н36		0.9500	C36A-	—Н36А	0.9	500
01—C1—C11		119.6 (4)	01A-	-C1AC2A	121	.7 (4)
O1—C1—C2		121.3 (4)	01A-	-C1AC11A	119	.7 (4)
C11—C1—C2		119.1 (4)	C2A—	-C1AC11A	118	.5 (4)
C3—C2—C1		120.0 (4)	C3A—	-C2AC1A	120	0.0 (4)

С3—С2—Н2	120.0	СЗА—С2А—Н2А	120.0
С1—С2—Н2	120.0	C1A—C2A—H2A	120.0
C2—C3—C21	127.2 (4)	C2A—C3A—C21A	127.2 (4)
С2—С3—Н3	116.4	С2А—С3А—НЗА	116.4
С21—С3—Н3	116.4	С21А—С3А—НЗА	116.4
C16—C11—C12	118.1 (4)	C12A—C11A—C16A	119.0 (4)
C16—C11—C1	119.7 (4)	C12A—C11A—C1A	121.6 (4)
C12—C11—C1	122.2 (4)	C16A—C11A—C1A	119.3 (4)
C13—C12—C11	120.5 (4)	C11A—C12A—C13A	120.5 (4)
C13—C12—H12	119.7	C11A—C12A—H12A	119.8
C11—C12—H12	119.7	C13A—C12A—H12A	119.8
C14—C13—C12	119.0 (4)	C14A—C13A—C12A	118.5 (4)
C14—C13—H13	120.5	C14A—C13A—H13A	120.8
C12—C13—H13	120.5	C12A—C13A—H13A	120.8
C13—C14—F1	119.1 (4)	C13A—C14A—F1A	118.9 (4)
C13—C14—C15	122.9 (4)	C13A—C14A—C15A	123.1 (4)
F1-C14-C15	118.0 (4)	F1A—C14A—C15A	118.0 (4)
C16-C15-C14	118.0 (4)	C16A—C15A—C14A	117.8 (4)
C16—C15—H15	121.0	C16A—C15A—H15A	121.1
C14—C15—H15	121.0	C14A—C15A—H15A	121.1
C15—C16—C11	121.6 (4)	C15A—C16A—C11A	121.1 (4)
C15—C16—H16	119.2	C15A—C16A—H16A	119.5
C11—C16—H16	119.2	C11A—C16A—H16A	119.5
C22—C21—C26	117.3 (4)	C22A—C21A—C26A	117.4 (4)
C22—C21—C3	118.6 (4)	C22A—C21A—C3A	119.2 (4)
C26—C21—C3	124.1 (4)	C26A—C21A—C3A	123.4 (4)
C23—C22—C21	121.2 (4)	C23A—C22A—C21A	121.7 (4)
C23—C22—H22	119.4	C23A—C22A—H22A	119.1
C21—C22—H22	119.4	C21A—C22A—H22A	119.1
C22—C23—C24	121.6 (4)	C22A—C23A—C24A	121.8 (4)
С22—С23—Н23	119.2	С22А—С23А—Н23А	119.1
C24—C23—H23	119.2	C24A—C23A—H23A	119.1
C23—C24—C25	117.2 (4)	C23A—C24A—C25A	116.2 (4)
C23—C24—C31	121.4 (4)	C23A—C24A—C31A	121.3 (4)
C25—C24—C31	121.4 (4)	C25A—C24A—C31A	122.4 (3)
C26—C25—C24	120.8 (4)	C26A—C25A—C24A	122.2 (4)
C26—C25—H25	119.6	C26A—C25A—H25A	118.9
C24—C25—H25	119.6	C24A—C25A—H25A	118.9
C25—C26—C21	121.9 (4)	C25A—C26A—C21A	120.6 (4)
С25—С26—Н26	119.0	C25A—C26A—H26A	119.7
C21—C26—H26	119.0	C21A—C26A—H26A	119.7
C32—C31—C36	116.8 (4)	C36A—C31A—C32A	116.4 (4)
C32—C31—C24	121.6 (4)	C36A—C31A—C24A	122.0 (4)
C36—C31—C24	121.6 (3)	C32A—C31A—C24A	121.6 (3)
C33—C32—C31	122.0 (4)	C33A—C32A—C31A	121.9 (4)
C33—C32—H32	119.0	C33A—C32A—H32A	119.0
C31—C32—H32	119.0	C31A—C32A—H32A	119.0
C32—C33—C34	120.7 (4)	C32A—C33A—C34A	120.5 (4)
С32—С33—Н33	119.7	С32А—С33А—Н33А	119.8

С34—С33—Н33	119.7	C34A—C33A—H33A	119.8
C35—C34—C33	118.5 (4)	C35A—C34A—C33A	118.8 (4)
C35—C34—H34	120.7	C35A—C34A—H34A	120.6
С33—С34—Н34	120.7	C33A—C34A—H34A	120.6
C36—C35—C34	120.5 (4)	C36A—C35A—C34A	120.2 (4)
С36—С35—Н35	119.8	С36А—С35А—Н35А	119.9
С34—С35—Н35	119.8	C34A—C35A—H35A	119.9
C35—C36—C31	121.5 (4)	C35A—C36A—C31A	122.0 (4)
С35—С36—Н36	119.3	С35А—С36А—Н36А	119.0
С31—С36—Н36	119.3	C31A—C36A—H36A	119.0
O1—C1—C2—C3	19.7 (7)	O1A—C1A—C2A—C3A	-20.1 (7)
C11—C1—C2—C3	-160.4 (4)	C11A—C1A—C2A—C3A	159.5 (4)
C1—C2—C3—C21	-177.2 (4)	C1A—C2A—C3A—C21A	177.0 (4)
O1-C1-C11-C16	20.7 (6)	01A—C1A—C11A—C12A	155.2 (4)
C2-C1-C11-C16	-159.1 (4)	C2A—C1A—C11A—C12A	-24.5 (6)
O1-C1-C11-C12	-155.7 (4)	O1A—C1A—C11A—C16A	-21.9 (6)
C2-C1-C11-C12	24.4 (6)	C2A-C1A-C11A-C16A	158.5 (4)
C16—C11—C12—C13	-0.3 (7)	C16A—C11A—C12A—C13A	0.7 (7)
C1-C11-C12-C13	176.2 (4)	C1A—C11A—C12A—C13A	-176.3 (4)
C11—C12—C13—C14	0.4 (7)	C11A—C12A—C13A—C14A	-1.1 (7)
C12—C13—C14—F1	179.2 (4)	C12A—C13A—C14A—F1A	-179.1 (4)
C12—C13—C14—C15	0.0 (7)	C12A—C13A—C14A—C15A	0.5 (7)
C13—C14—C15—C16	-0.4 (7)	C13A—C14A—C15A—C16A	0.4 (7)
F1-C14-C15-C16	-179.6 (4)	F1A—C14A—C15A—C16A	180.0 (4)
C14—C15—C16—C11	0.5 (7)	C14A—C15A—C16A—C11A	-0.8 (7)
C12—C11—C16—C15	-0.1 (7)	C12A—C11A—C16A—C15A	0.2 (7)
C1-C11-C16-C15	-176.7 (4)	C1A—C11A—C16A—C15A	177.3 (4)
C2—C3—C21—C22	-171.9 (4)	C2A—C3A—C21A—C22A	173.2 (4)
C2—C3—C21—C26	10.1 (7)	C2A—C3A—C21A—C26A	-9.2 (7)
C26—C21—C22—C23	0.2 (6)	C26A—C21A—C22A—C23A	0.9 (6)
C3—C21—C22—C23	-177.9 (4)	C3A—C21A—C22A—C23A	178.7 (4)
C21—C22—C23—C24	-0.5 (6)	C21A—C22A—C23A—C24A	-1.1 (6)
C22—C23—C24—C25	1.0 (6)	C22A—C23A—C24A—C25A	0.2 (6)
C22—C23—C24—C31	-179.4 (4)	C22A—C23A—C24A—C31A	-179.2 (4)
C23—C24—C25—C26	-1.3 (6)	C23A—C24A—C25A—C26A	0.8 (6)
C31—C24—C25—C26	179.2 (4)	C31A—C24A—C25A—C26A	-179.8 (4)
C24—C25—C26—C21	1.0 (6)	C24A—C25A—C26A—C21A	-0.9 (6)
C22—C21—C26—C25	-0.5 (6)	C22A—C21A—C26A—C25A	0.0 (6)
C3—C21—C26—C25	177.5 (4)	C3A—C21A—C26A—C25A	-177.6 (4)
C23—C24—C31—C32	3.4 (6)	C23A—C24A—C31A—C36A	179.0 (4)
C25—C24—C31—C32	-177.1 (4)	C25A—C24A—C31A—C36A	-0.4 (6)
C23—C24—C31—C36	-176.4 (4)	C23A—C24A—C31A—C32A	-2.7 (6)
C25—C24—C31—C36	3.2 (6)	C25A—C24A—C31A—C32A	178.0 (4)
C36—C31—C32—C33	1.5 (6)	C36A—C31A—C32A—C33A	-2.4 (6)
C24—C31—C32—C33	-178.3 (4)	C24A—C31A—C32A—C33A	179.2 (4)
C31—C32—C33—C34	-2.0 (7)	C31A—C32A—C33A—C34A	0.6 (7)
C32—C33—C34—C35	0.9 (7)	C32A—C33A—C34A—C35A	0.5 (7)
C33—C34—C35—C36	0.7 (6)	C33A—C34A—C35A—C36A	0.2 (6)
C34—C35—C36—C31	-1.3 (6)	C34A—C35A—C36A—C31A	-2.1 (6)

C32—C31—C36—C35	0.2 (6)	C32A—C31A—C36A—C35A	3.1 (6)
C24—C31—C36—C35	179.9 (4)	C24A—C31A—C36A—C35A	-178.5 (4)

Fig. 1

